Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Document Type
Year range
1.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3157-3172, 2022 Sep 25.
Article in Chinese | MEDLINE | ID: covidwho-2288066

ABSTRACT

COVID-19 represents the most serious public health event in the past few decades of the 21st century. The development of vaccines, neutralizing antibodies, and small molecule chemical agents have effectively prevented the rapid spread of COVID-19. However, the continued emergence of SARS-CoV-2 variants have weakened the efficiency of these vaccines and antibodies, which brought new challenges for searching novel anti-SARS-CoV-2 drugs and methods. In the process of SARS-CoV-2 infection, the virus firstly attaches to heparan sulphate on the cell surface of respiratory tract, then specifically binds to hACE2. The S protein of SARS-CoV-2 is a highly glycosylated protein, and glycosylation is also important for the binding of hACE2 to S protein. Furthermore, the S protein is recognized by a series of lectin receptors in host cells. These finding implies that glycosylation plays important roles in the invasion and infection of SARS-CoV-2. Based on the glycosylation pattern and glycan recognition mechanisms of SARS-CoV-2, it is possible to develop glycan inhibitors against COVID-19. Recent studies have shown that sulfated polysaccharides originated from marine sources, heparin and some other glycans display anti-SARS-CoV-2 activity. This review summarized the function of glycosylation of SARS-CoV-2, discoveries of glycan inhibitors and the underpinning molecular mechanisms, which will provide guidelines to develop glycan-based new drugs against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Neutralizing , Glycosylation , Heparin , Heparitin Sulfate , Humans , Polysaccharides/chemistry , Receptors, Mitogen/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
2.
Technological Forecasting and Social Change ; 187:122195, 2023.
Article in English | ScienceDirect | ID: covidwho-2150666

ABSTRACT

The health sector is very specific and difficult market for firms to access and deal with. The main reasons for this is that the healthcare systems are in continuous change, the co-creation processes in hospitals are complicated involving many different actors which also affects on firms commercialization and internationalization approaches. However, there is a growing demand of health services and the sector is growing also due to the COVID situation, that has been dramatically speeding up the digitalization of the healthcare services in the hospital settings. Approaching international hospital markets is, however, challenging for the start-up companies. On their journey they are facing a resistance, that they have to overcome in many different ways. The aim of this paper is to increase understanding how a start-up can overcome hospital resistance in an international innovation co-creation process. The results of are based on in depth case study in which the data collection was done over the four years of data gathering. The paper highlights how start-up companies can overcome the resistance in the international innovation co-creation in the hospital markets. It shows the importance of different activities, actors, capabilities and international activities in different phases of the international innovation co-creation journey.

3.
Front Chem ; 10: 871509, 2022.
Article in English | MEDLINE | ID: covidwho-1952253

ABSTRACT

The pandemic caused by SARS-CoV-2 is the most widely spread disease in the 21st century. Due to the continuous emergence of variants across the world, it is necessary to expand our understanding of host-virus interactions and explore new agents against SARS-CoV-2. In this study, it was found exopolysaccharides (EPSs) from halophilic archaeon Haloarcula hispanica ATCC33960 can bind to the spike protein of SARS-CoV-2 with the binding constant KD of 2.23 nM, block the binding of spike protein to Vero E6 and bronchial epithelial BEAS-2B cells, and inhibit pseudovirus infection. However, EPSs from the gene deletion mutant △HAH_1206 almost completely lost the antiviral activity against SARS-CoV-2. A significant reduction of glucuronic acid (GlcA) and the sulfation level in EPSs of △HAH_1206 was clearly observed. Our results indicated that sulfated GlcA in EPSs is possible for a main structural unit in their inhibition of binding of SARS-CoV-2 to host cells, which would provide a novel antiviral mechanism and a guide for designing new agents against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL